Day 29

Five steps to solve dynamic programming problems:

  1. Determine a dp array and the meaning of the array index.
  2. Determine the recurrence formula.
  3. Init the dp array.
  4. Determine the recursion order.
  5. Example derivation dp array.

Fibonacci Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public int fib(int n) {
if (n <= 1) {
return n;
}

int a = 0, b = 1;

for (int i = 2; i <= n; i++) {
int sum = a + b;
a = b;
b = sum;
}
return b;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
func fib(n int) int {
if n <= 1 {
return n
}
a, b := 0, 1
for i := 2; i <= n; i++ {
sum := a + b
a = b
b = sum
}
return b
}

Climbing Stairs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public int climbStairs(int n) {
if (n <= 2) {
return n;
}
int[] dp = new int[n+1];
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

func climbStairs(n int) int {
if n <= 2 {
return n
}

dp := make([]int, n+1)
dp[1] = 1
dp[2] = 2
for i := 3; i <= n; i++ {
dp[i] = dp[i-1] + dp[i-2]
}
return dp[n]
}

Min Cost Climbing Stairs

1
2
3
4
5
6
7
8
9
10
11
12
class Solution {
public int minCostClimbingStairs(int[] cost) {
int[] dp = new int[cost.length + 1];
dp[0] = 0;
dp[1] = 0;

for (int i = 2; i <= cost.length; i++) {
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.length];
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
func minCostClimbingStairs(cost []int) int {
dp := make([]int, len(cost)+1)
dp[0], dp[1] = 0, 0

for i := 2; i <= len(cost); i++ {
dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])
}
return dp[len(cost)]
}

func min(a, b int) int {
if a < b {
return a
}
return b
}